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Abstract. We consider the scaling properties of the conductivity for non-zero frequencies. 
We analyse the relevance of various models to descriptions of actual experimental situations. 
We discuss more particularly the equivalence between conduction and diffusion. In this 
case, we find a regime where the conductivity is proportional to the size L of the sample, 
corresponding to an anomalous skin effect. This L dependence leads to a frequency- 
dependent conductivity different from the result of Gefen, Aharony and Alexander. We 
finally introduce a model consisting of a two-dimensional random resistor system lying on 
a three-dimensional substrate made of capacitors. This might be relevant to describe a 
system of conducting particles deposited on a thin insulating substrate such as considered 
recently by Laibowitz and Gefen. 

1. Introduction 

Time-dependent conductivity near the percolation threshold pc  has attracted consider- 
able attention this past decade. This is related to the many potential applications in 
a variety of phenomena ranging from conduction in random porous media such as oil 
reservoirs to viscoelastic properties of polymers and gels. In spite of the simplicity of 
the percolation model, however, different approaches were used for these dynamical 
properties. These may be roughly divided into two categories. Historically, Efros and 
Schkloskii (ES)  provided the first theoretical approach [ 11, which was subsequently 
used and developed by many others [2-61. The important result here is that there is 
a characteristic frequency R - / p  -p,l”‘ that vanishes with an exponent related to both 
exponents s and t of the random superconductor and the random resistor network 
respectively. For high frequencies, w >>a, both the real and imaginary parts of the 
conductivity diverge as Re Z - Im Z - w‘ with U = t / ( s  + t ) .  For low frequencies ( w  << 
R)  the exponent s also describes the divergence of the dielectric constant E , =  

(Im Z ) / w  - / p  -pel-' as p approaches p c  in the insulating regime. 
More recently, Gefen, Aharony and Alexander (GAA) [7] provided a quite different 

approach. This is based on the idea that conduction along a fractal is related to 
diffusion via the Einstein relation. Then depending on the problem that one considers, 
only one of the exponents s or t appears in the characteristic frequency R. These 
correspond respectively to the so-called termite [8] or ant [9] diffusion problems. In 
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the ant approach, for instance, one finds R - Ip -pc15'+' with S I =  2v - p, where v and 
p are the connectedness length and order parameter exponents in the percolation 
problem. The large frequency behaviour of the conductivity is characterised by an 
exponent u = t / (  t + sf). In the low-frequency regime the dielectric constant diverges 
with the exponent s f  which coincides with the random superconducting exponent s 
only in mean field. 

On the experimental side the situation is not so clear either. Kubovy and Stephan 
[ 101 measured the high-frequency conductivity in a three-dimensional mixture of 
insulating and conducting materials at the percolation threshold and found a value 
for the exponent u = 0.72, in good agreement with the ES prediction u = t / ( s  + t )  = 0.72 
obtained using the recent estimates for s and t in three dimensions [ l l ,  1211. For 
other three-dimensional experiments see the recent review by Niklasson [ 131. 

On the other hand, the two-dimensional experimental results of Laibowitz and 
Gefen [14] on thin Au films deposited on an insulating substrate give u = 0.95, which 
does not agree either with the ES prediction u = 0.5 or with the GAA prediction u = 0.35. 

The aim of this paper is to find the conditions of validity of the ES and GAA 

approaches. To do so, we will express both of them in terms of resistor and capacitor 
models in order to show more clearly how they relate to actual experimental realisations. 

In the following, we will first recall the ES approach, which applies to a random 
mixture of poor and good conductors and is simply modelled by having a mixture of 
resistors with probability p and capacitors with probability (1 - p ) .  Then we will 
analyse the GAA analogy between diffusion and conduction. This is equivalent to 
considering a random resistor network, in which a resistor is present with probability 
p (and absent with probability (1 - p ) ) .  But all the sites are now grounded through a 
constant capacitor Co.  In the high-frequency regime the main contribution to the 
conductance comes from the capacitors. Since there are Ld capacitors in parallel, 
where L is the system size and d the Euclidean dimension, the conductance is 
proportional to Ld and the conductivity to L. Such anomalous size dependence, that 
seems to have been overlooked so far, leads to new exponents. In particular we find 
for the high-frequency behaviour an exponent u = ( t  + v)/ ( t  + 2 v - p ) ,  which for d = 2 
gives a value u = 0.69, different from the result of Gefen er a1 [7]. This value is in 
agreement with the experimental and model results of Rigord and H u h  [15], but is 
different from the experimental results of [ 141. 

A possible generalisation of the latter model, which might be especially relevant 
for interpreting experiments such as the Laibowitz and Gefen [ 141 random deposition 
of thin gold films near the percolation threshold, is to assume that the resistor percola- 
tion problem lies at the interface of a three-dimensional insulating substrate on which 
the random mixture is deposed. We will assume that the substrate is made of a regular 
array of capacitors. An important consequence of the presence of this substrate is the 
appearance of a new set of exponents that has not been considered so far. In particular, 
we expect for this model a value of u close to 1, with a possible cross-over to the ES 

value u = 0.5 depending on the width of the substrate. Using the transfer matrix 
approach we have calculated u in the limit of infinite width and found u -0.85. 

2. The Efros-Shklovskii theory 

Let us consider a random bond percolation problem with a mixture of poor conductors, 
with conductance U , ,  present with probability p ,  and good conductors, with conduct- 
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ance u2, present with probability (1 - p ) ,  with uI << u2. Let Z(u l ,  u2, E )  be the conduct- 
ance of the mixture at a distance E = p - p c  from the threshold. Following the notation 
of Hong et a1 [4], this may be written in the following scaled form: 

X(u,, u2, E ) = u l E ' j k ( h t : - ' )  (1) 

where h is the ratio u2/u1, f + ( x )  is a scaling function valid above (+) or below (-) 
the threshold, and the cross-over exponent C$ was calculated first by Efros and Shklovskii 
[l], with the result 

+ = t + s  (2) 
where t and s are respectively the exponents of the conductivity in the random resistor 
problem and the random superconductor problem. If we now consider the case when 
u1 = R-' is a resistor and cr2 = jCw is a capacitor, with j = n, relation (1) becomes [ 161 

ZR = E ' ~ * ( ~ ( W / W ~ ) E - + )  (3 )  
where wo= ( R C ) - '  is a microscopic characteristic frequency. Relation (3) exhibits a 
characteristic frequency i2 

n = WOE' (4) 

that vanishes when one approaches the percolation threshold with the characteristic 
exponent 4. 

For w >>a, the E dependence disappears and ZR - w "  exp(jur /2)  with U = 
t / ( s +  t ) .  We now turn to the GAA approach which is based on the Einstein relation 
between conductivity and diffusion coefficient [ 171. 

3. The diffusion equivalence 

This approach does not explicitly take into account the presence of the capacitors as 
in the ES theory, and therefore is difficult to relate to experimental realisations. Here 
we wish to find the network model, made of resistors and capacitors, which is equivalent 
to the GAA approach and calculate its frequency-dependent conductivity. Surprisingly, 
the result differs from that of Gefen et al. This discrepancy is due to the fact that in 
the GAA approach it was not taken into account that the time-dependent conductivity 
scales linearly with the system size L. While this size dependence may be seen easily 
in the resistor-capacitor network model, it is somewhat hidden in the diffusion 
approach. We start with the classical ant problem, i.e. a particle diffusing on a network. 
The master equation for such a random walk is 

J 

where Pi is the density of walkers at site i, Fi its derivative with respect to time, Wj 
is the transition probability from site i to sitej, and the sum is over all nearest neighbours 
j to site i. 

Consider now a resistor network made of a conductance ui between nearest- 
neighbour sites and where every site is grounded through a capacitor CO (see figure 
1). The equation for the voltage at each node is given by 
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Figure 1. The equivalence between conduction and 
diffusion is based on a random resistor network 
where the sites are grounded through a capacitor. 

Figure 2. Modification of figure 1 where the 
capacitors are replaced by conductances. 

which is identical to equation (5) for the random walkers. Because of this correspon- 
dence, the time-dependent diffusion coefficient in the random walk problem is related 
via the Einstein relation to the conductivity of the random network made of resistors 
grounded through the capacitors. Let us then calculate the conductivity for the system 
shown in figure 1 and then compare it with the diffusion coefficient for the random 
walk problem. Note that equation (6) can also be written as 

where ?, is the Fourier transform of the voltage with respect to time. In the following, 
we wish to study the scaling behaviour of the conductance of the system in figure 1 
as a function of its size L. To do  so, we first consider the system shown in figure 2. 
This is obtained from figure 1 by replacing the capacitors with pure conductances uo. 
The equations for the voltage are given by 

Comparing relations (7) and (8), we can see that if we find the conductance G(u, uo) 
for the latter system, we get the conductance of the system of figure 1 by analytical 
continuation of U,, to the pure imaginary value jwC,. 

We first consider the case in which all the conductances are present and identical, 
ad = U, and calculate the conductance U, for a one-dimensional system of length n. 
It is easy to derive the following recursion for n > 1: 

u,=u,+uu,~,/(u+u,-,) 

with 

u,=a+uo. 

For n +CO, the above equation leads to the following solution: 

2u ,  = uo + Jui + 4uu0 (9) 

which is finite. Therefore, for a large value of the system size L, the conductivity 
uL = um is independent of L except when uo = 0 or  U = W .  For uo = 0 we have uL = L-lu, 
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whereas for U=CO we have uL=c0. However, if one of the bonds U is kept finite, 
which is the case that we will consider, then crL = Lu,. 

Thus in general we expect the following scaling form for a one-dimensional system 
of size L: 

rL= Lu, f ( h L 2 )  (10) 

where h = uo/u, and 

where f o  and f l  are constants. 
For a d-dimensional system, the conductance G is G = Ld- 'uL ,  since it is made 

of Ld-' one-dimensional channels of conductance uL in parallel. Thus the conductivity 
1 for a d-dimensional network in which all sites are grounded (see figure 2) is 

1 = G /  Ld-2 = L2ao f ( hL2) (12) 

where f (x )  is given by (1 1). 
Analytically continuing to imaginary values go = j w C o ,  we get 

1 = L2joCof(  jwCoL2/a)  (13) 

z = Lull2( jwCo)1/2.  (14) 

which, for large frequencies, w + CO, gives, from (1 1 b ) ,  

Let us now consider the dilute case of the system in figure 2 in d dimensions, in which 
uti = U with probability p and zero with probability (1 -p) .  At the percolation threshold, 
we will show the asymptotic behaviours are as follows: 

UL- U 0  = 0 

q f f ,  U,) - UoL2-8 u=CO i 
U:U'-UL uo and U finite (15c) 

where i= t / v  and 4 = p / v  are respectively the conductivity and order parameter 
exponents divided by the connectedness length exponent, and 

u = ( l + i ) / ( 2 + i - P ) .  (16) 

The behaviour in (15b) is due to the fact that LD conductances U contribute to the 
total conductance G, with D the fractal dimension. Thus the conductivity behaves as 

The linear dependence on L in (1Sc) follows from the fact that, for U and U, finite, 

Relations (15) may be written in the general scaling form 

= ~ l ~ d - 2 -  ~ D - d + 2  . Using the scaling relation d - D = 4, we find (1Sb). 

the L dependence is given by that at p = 1, equations ( l l b )  and (12). 

X ( U ,  go) = a0L2-'g(hL') (17) 

with 

4 = i + 2 - p "  
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and the asymptotic behaviours 

For p different from p c ,  the conductivity is given by 

Z = Lao['-'g*( h[', [/ L) (20) 
where h = a o / w ,  
equation (20) gives the following behaviour: 

and U are given in relations (18) and (16) respectively. For [/ L<< 1, 

a[-' p + p : ;  a o = O  

c -  Lcrot'-fi p + p ; ;  (T=m (216) 1 Luo" h t 6  >> 1. (21c) 
The linear dependence in L in relation (216) is due to the fact that for p < p c  and 
ao#O the conductance G is proportional to ( L / [ ) d - ' [ D  because there are ( L / [ ) d - '  
superconducting clusters in parallel, each connected to-the ground through 5" resistors 
in parallel. The conductivity is Z = G/ L d - 2  - L [ ' - p .  Finally since for a, # 0 the 
,conductivity is proportional to L above and below p c ,  this same linear dependence 
follows also at p c ,  equation (21c). 

Note also that from relation (15c) we have, for hL2 >> 1 and h['<< 1, a regime where 

c = Luy2ff ' /2  hL2>> 1, ht6<< 1. (22) 
Analytically continuing uo to j w C ,  we find 

z = LjwCt'-'g,( juc[J/a, e/ L )  

which, for [/ L<< 1, has the following limits: 

Lj w c t l - 8  w = o ,  p + p ;  

x = La'"( jwC) '12  L ' / = w c / u  >> 1 

f % J C / a  >> 1. i La' -u  ( j w C ) 

Note that equation (24) implies a dielectric constant 

E ,  = (Im ~ ) / w  - L[ ' -@.  

These results do not agree with the analysis based on anomalous diffusion. Indeed 
we find that the dielectric constant diverges with an exponent s' = 1 - b, equation (27), 
while the high-frequency behaviour is governed by the exponent U = (1 + 1)/(2+ T-b), 
equation (26). We recall that in the anomalous diffusion approach it was found that 
s ' = 2 - b  and U = 1/(2+ 7 - p ) .  The reason for this discrepancy is that in the ant 
approach, the linear dependence of the macroscopic conductivity with L for w # 0, 
relation (27), was not taken into account. 

We will show now that, if we use the diffusion approach of Gefen et a1 and take 
this size dependence properly into account in the macroscopic conductivity, we repro- 
duce the result (26). 

Using the equivalence between diffusion constant and conductivity, Gefen er a1 
found that at p c  the characteristic time T for the ant to reach the boundary of a system 
of linear dimension L is 

= ~ 2 +  7-8 (28) 
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Since the static conductivity scales as L-' and the frequency-dependent conductivity 
X(L, w )  scales linearly with L, we have the following scaling behaviour: 

and we recover equation (26). 

the result of Gefen et al. 
Had we required that the conductivity be size independent, we would have obtained 

4. An alternative model 

In the previous sections we have described the model based on anomalous diffusion 
in terms of a network of resistors and grounded capacitors. Such a formulation makes 
it easier to predict the relevance of the model to actual physical systems. One case 
where this model seems to be relevant is the two-dimensional system of Rigord and 
H u h  [15].  This is a network of graphite deposited on a thin insulating sheet which 
is put on a conductor plate. The insulating sheet corresponds to the grounded conduc- 
tors in the model. The measured frequency dependence of the complex conductance 
is in good agreement with the predicted laws. They find ReX-ImX+u" ,  with 
u = 0.67 i 0.02, in agreement with relation (16), giving u -- 0.69. 

We propose now another model which may be relevant in some two-dimensional 
situations. This is shown in figure 3. It is made of a two-dimensional sheet L X  L of 
a random conducting-insulating mixture in which a conductance is present with 
probability p and a capacitor CO with probability (1 - p ) .  This plane is put on a 
three-dimensional network of dimensions L x L x L ,  in which each bond consists of a 
capacitor C. Since the result does not depend crucially on the value of CO, we will 
take CO = C for simplicity. When L ,  is negligible compared with the two-dimensional 
connectedness length the system can be considered as two-dimensional and we get the 
same behaviour as the Efros-Shklovskii model. 

Figure 3. An alternative model consists of a two-dimensional random o-CO system put on 
a three-dimensional network where all the bonds are capacitors. 
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Let us now consider the case when L1  = L, so that the substrate may be considered 
as a three-dimensional insulator. As in the previous section, we first consider the case 
in which the capacitor is replaced by a real conductance a. and then extend the results 
to complex values of ao. 

If we fix p = p c ,  the two-dimensional threshold, the conductance G has the following 
behaviour: 

a0 = 0 

f f = m  

a and a. finite ( 3 0 ~ )  

where ?is the two-dimensional conductivity exponent which is known to be numerically 
?= 0.98. s’” is a new exponent which describes the divergence of a three-dimensional 
network in which the bonds on the top surface are made either of superconducting 
links with probability p or  finite conductances with probability (1 - p ) .  We expect s” 
to be close to zero. This has been confirmed by a calculation that we have done using 
the transfer matrix approach, which gives s”= 0.15 (see next section). The extra linear 
dependence on L is due  to the three-dimensional nature of the system whenever a. # 0. 
The exponent U will be discussed below. 

As in the previous section, relations (30) may be summarised in the following 
scaling equation: 

G = aoLLj”g( hL’) (31) 

where h = ao/a and the function g ( x )  has the following asymptotic behaviours: 

g ( x )  = D +  F/x x<< 1 (32a) 

g ( x )  - xu-1 x >> 1 

with u = ( l + ? ) / ( ? + ? ’ ) .  
Away from p c  the conductance is 

G = a,Lt”’g,(h(’, 5L) (33) 

where 5 is the two-dimensional connectedness length. Analytically continuing a. to 
jwC, we find that the zero-frequency dielectric constant diverges as ( p  -pc)-”’ while 
for high frequencies the real and imaginary parts of the conductance diverge as w “  with 

U = (1 + i ) / ( l +  ?+ ,,,) = 1 (34) 

because of our estimate for s”. This last result is consistent with the experimental 
result of Laibowitz and  Gefen [ 141 on thin Au films deposited on an  insulating substrate. 

Finally, we note that a three-dimensional mixture of insulating and  conducting 
materials should be well described by the Efros-Shklovskii model, because of the 
absence of any substrate. The experiments of Kubovy and Stephan on such a system 
at p c  are in good agreement indeed with this model. 

5. The exponent P 

We calculate the exponent s’” using the transfer matrix approach [12, 181. In this 
method one constructs a n  L x L x n bar of a cubic lattice by adding bond after bond. 
In the first vertical plane a voltage V = 0 is imposed and  one looks for the voltages V,  



Conductivity and difuusion near the percolation threshold 4197 

which should be put on each of the N 2  end points in the nth vertical plane in order 
that they carry a current I , .  They are related through the resistance matrix R, by 

N 

V; = R,jI, i = 1 , 2  , . . . ,  N. 
j =  1 

( 3 5 )  

The matrix R, must be updated for each bond that is added via 

= R!J + rs!ff6jff (36) 

if the bond is longitudinal at line cy and via 

if the bond is transverse between lines cy and /3; r is the resistance of the bond. The 
resistance of the bar in the limit of very long bars ( n  +a) is then given by R = Rt,/ L, 
independent of i. 

To calculate s'" we consider a bar which on the upper plane has conductors ( r  = 1) 
with probability 1 - p c  and superconductors ( r  = 0) with probability p c ,  where p c  = 4.  
All the other bonds are conductors. In the transverse direction, parallel to the plane, 
we impose periodic boundary conditions. In the transverse direction perpendicular to 
the plane, we consider two cases: 

(A) free boundary conditions, which correspond to a free surface plane on the 
surface of the bulk; 

( B )  periodic boundary conditions, which correspond to the case of a surface of 
defects within the bulk. 

Case (A) corresponds to the physical situation described in this paper and should 
yield s"". Case ( B )  is in principle another problem and its exponent S' gives an upper 
bound for the exponent s""; the advantage of (B)  is that due to the periodic boundary 
conditions, the convergence in L is faster and thus the numerical simulation is more 
reliable. 

In figure 4 we show the result of our calculation. The upper curve corresponds to 
case (A) and the lower one to case (B) .  We plot R as a function of the linear size L 

0.30 

*-<€.< R025L 0.20 2 4 6 8 10 

L L 

Figure 4. Log-log plot of the resistance R against 
the width L of the strip. The full circles correspond 
to open boundary conditions; the open circles corre- 
spond to closed boundary conditions. 

Figure 5. In R plotted against In(ln L); symbols have 
the same meaning as in figure 4. 
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of the bar in a log-log plot, so that the data should, for large enough L, fall on straight 
lines of slopes -?' and -? respectively. We have considered n between lo5 and IO6 
and spent 30 hours on the Cray XMP to obtain these data. The error bars are calculated 
from the statistical fluctuations between several pieces of the bar. From the straight 
lines of figure 4 we conclude 

?' = 0.15 * 0.02 s" = 0.21 * 0.02. (38) 

We investigated the same data also for the possibility of a logarithmic decay of the form 

R -(In L)', (39) 

From figure 5 we see that the data are also not incompatible with such a behaviour with 

2" = 0.3 * 0.1 x" = 0.42 * 0.04. (40) 

6. Conclusion 

We have considered three models to describe the frequency dependence of the conduc- 
tivity at the percolation threshold. 

The first one, due to Efros and Shklovskii [l], is made of resistors present with 
probability p and capacitors with probability (1 - p )  and is expected to apply to 
three-dimensional systems, as found in [16]. For high frequencies in particular, it 
gives X - w' ,  with U = ?/(I+ t). 

The second model is based on the anomalous diffusion model of Gefen et a1 and 
is made of finite resistors present with probability p and infinite resistors present with 
probability (1 - p ) .  All the resistors are now grounded via a capacitor. A typical 
experimental realisation is the system of Rigord and H u h  [I51 which consists of a 
two-dimensional random resistor network on top of a two-dimensional insulating sheet 
which lies on a conducting substrate. For high frequencies it predicts U = 
(1 + ?)/( ?+ 2 - p ) ,  in agreement with the experimental data. This result differs from 
that given in the original paper [7], based on the anomalous diffusion. The discrepancy 
is due to a factor L in the frequency-dependent conductivity which was overlooked 
in the original approach. 

Finally we introduced a third model here, which also applies to the two-dimensional 
random conductor-insulator composite materials, when the substrate is three 
dimensional. This model predicts a value for U slightly smaller than unity, as found 
in the experiment of Laibowitz and Gefen. 

All three models are defined in terms of resistors and capacitors and it should be 
easy to decide which one should apply in any experimental realisation. For instance 
we expect that by changing the conducting substrate into an insulating one in the 
Rigord-Hulin experiment, one should observe the result given by model 3, name U = 1. 

Acknowledgments 

The authors are much indebted to L De Arcangelis, R Bidaux and J M Luck for related 
discussions. 



Conductivity and difiision near the percolation threshold 4199 

References 

[ l ]  Efros A L and Shklovskii B I 1976 Phys. Status Solidi b 76 131 
[2] Straley J 1977 Phys. Rev. B 15 5733 
[3] Webman I,  Jortner J and Cohen M H 1977 Phys. Rev. B 16 2593 
[4] Hong D C, Stanley H E, Coniglio A and Bunde A 1986 Phys. Rev. B 33 4564 
[SI  Clerc J P, Giraud G, Laugier J M and Luck J M 1985 Physics of Finely Divided Matter (Proceedings 

[6] Bug A L R, Crest G S, Cohen M H and Webman I 1987 Phys. Rev. B 36 3675 
[7] Gefen Y, Aharony A and Alexander S 1983 Phys. Rev. Lett. 50 77 
[8] Coniglio A and Stanley H E 1984 Phys. Rev. Lett. 52 1068 
[9] Havlin S and Ben Avraham D 1987 Adv. Phys. 36 695 

[ 101 Kubovy A and Stephan 0 1986 Thin Solid Films 135 L9 
[ l l ]  Derrida B, Stauffer D, Herrmann H J and Vannimenus J 1983 J. Physique Lett. 44 701 
[12] Herrmann H J, Derrida B and Vannimenus J 1984 Phys. Rev. B 30 4080 
[13] Niklasson G A 1987 J. Appl. Phys. 62 1 
[14] Laibowitz R G and Gefen Y 1984 Phys. Rev. Lett. 53 380 
[15] Rigord P and Hulin J P 1988 Europhys. Lett. 6 145 
[16] Daoud M, Hong D and Family F 1988 J. Phys. A: Math. Gen. 21 L917 
[17] de Gennes P G 1980 J. Physique 43 C3-17 
[18] Derrida B and Vannimenus J 1982 J. Phys A:  Math. Gen. 15 L557 

in Physics 5) (Berlin: Springer) p 193 


